

Compositions of Isometries

Vocabulary

Review

Use the transformation below to answer questions 1-3.

1. Fill in the blanks.

The *image* of $\angle J$ is and the *image* of $\angle K$ is

2. Circle the pair of *corresponding sides*.

 \overline{JQ} and $\overline{J'Q'}$ \overline{KQ} and $\overline{J'Q'}$ \overline{JK} and $\overline{J'Q'}$ \overline{JQ} and $\overline{JQ'}$

3. Circle the word that completes the sentence.

The *transformation* $\triangle JKQ \rightarrow \triangle J'K'Q'$ is a _____.

translation reflection rotation dilation

Vocabulary Builder

Isometry (noun) $\overline{1}$ sä mə trē

Related Words: transformation, translation, reflection, rotation, glide reflection

 $\textbf{Definition:} \ \ \textbf{An isometry} \ \textbf{is a transformation that preserves distance, or length.}$

Example: Translations, reflections, rotations, and glide reflections are **isometries**.

Use Your Vocabulary

4. Underline the correct word to complete each sentence.

In a transformation, the original figure is the image/preimage.

The resulting figure is the image/preimage.

5. Circle the type of transformation that maps each (x, y) to (x - 8, y + 2).

translation reflection rotation glide reflection dilation

Translation

Rotation

Reflection

Glide Reflection

Theorem 9-1

The composition of two or more isometries is an isometry.

take note

Theorem 9-2 Reflections Across Parallel Lines

A Composition of reflections across two parallel lines is a translation.

You can write this composition as

$$R_m \circ R_l(\triangle ABC) = \triangle A"B"C"$$

or
$$R_m(R_l(\triangle ABC)) = \triangle A"B"C"$$
.

The Composition has the following properties.

- \overline{AA} ", \overline{BB} ", and \overline{CC} " are all perpendicular to lines l and m.
- $\bullet \ AA" = BB" = CC" = 2PQ$

Problem 1 Composing Reflections Across Parallel Lines

Got lt? Draw parallel lines l and m. Draw J between l and m. What is the image of $(R_m \circ R_l)(J)$? What is the distance of the resulting translation?

6. Reflect J across line l. PA = AP', so PP' = 2

7. Reflect the image across line m. P'B = BP'', so P'P'' = 2

8. Circle the correct answer.

$$P$$
 moved a total distance $PP'' = P'P'' - PP' = 2BP' - 2AP' = ?$

0.5AB

AB

1.5AB

2AB

2.5AB

Lake note

Theorem 9-3 Reflections Across Intersecting Lines

A Composition of reflections across two intersecting lines is a rotation.

You can write this composition as $(R_l \circ R_m)(\triangle ABC) = \triangle A''B''C''$

$$R_l(R_m \triangle ABC) = \triangle A''B''C''.$$

The composition has the following properties.

- The figure is rotated about the point where the two lines intersect. In this case, point *Q*.
- **9.** Underline the correct word to complete the sentence. $\triangle ABC$ is rotated clockwise/counterclockwise around the point of intersection.

Problem 3 Finding a Glide Reflection Image

Got lf? \triangle *TEX* is shown in the graph to the right. What is the image of \triangle *TEX* for the glide reflection $(R_{v=-2} \circ T_{<1,0>})(\triangle$ *TEX*)?

Use the information you are given and choose from the following words to fill in the blanks and complete each statement.

reflection

translate

reflect

image

Know

Vertices of $\triangle TEX$:

Translation rule: $T_{<\square}$ $\square>$ $(\triangle TEX)$

Reflection line equation:

Need

The _____ of $\triangle TEX$ for the glide reflection

First use the translation rule to ____

 \triangle TEX. Then ____ the translation image of each vertex across the line of .

right / left / up /down 1 unit.

Reflect the image of $\triangle T'E'X'$ across the line The vertices of $\triangle A''B''C''$ are

Lesson Check • Do you UNDERSTAND?

Error Analysis You reflect $\triangle DEF$ first across line m and then across line n. Your friend says you can get the same result by reflecting $\triangle DEF$ first across line n and then across line m. Explain your friend's error.

Fill in the blanks in each statement and diagram.

You:

12. Reflect $\triangle DEF$ over line

13. Reflect the image of $\triangle DEF$ over line

Your friend:

14. Reflect $\triangle DEF$ over line

15. Reflect the image of $\triangle DEF$ over line

16. Explain your friend's error on the lines below.

Math Success

Check off the vocabulary words that you understand.

glide reflection

isometry

Rate how well you can use compositions of isometries.

Need to 10 Now I review get it!