9-4
 Compositions of Isometries

Vocabulary

Review

Use the transformation below to answer questions 1-3.

1. Fill in the blanks.

The image of $\angle J$ is and the image of $\angle K$ is
2. Circle the pair of corresponding sides.

$$
\overline{J Q} \text { and } \overline{J^{\prime} Q^{\prime}} \quad \overline{K Q} \text { and } \overline{J^{\prime} Q^{\prime}} \quad \overline{J K} \text { and } \overline{J^{\prime} Q^{\prime}} \quad \overline{J Q} \text { and } J Q^{\prime}
$$

3. Circle the word that completes the sentence.

The transformation $\triangle J K Q \rightarrow \triangle J^{\prime} K^{\prime} Q^{\prime}$ is a \qquad .
translation reflection rotation dilation

Vocabulary Builder

Isometry (noun) $\overline{\mathbf{1}}$ sÄ mə trē
Related Words: transformation, translation, reflection, rotation, glide reflection
Definition: An isometry is a transformation that preserves distance, or length.
Example: Translations, reflections, rotations, and glide reflections are isometries.

- Use Your Vocabulary

4. Underline the correct word to complete each sentence.

In a transformation, the original figure is the image/preimage .
The resulting figure is the image/preimage .
5. Circle the type of transformation that maps each (x, y) to $(x-8, y+2)$. translation reflection rotation glide reflection dilation

There are only four isometries.

Translation	Rotation	Reflection	Glide Reflection
R		\uparrow	
R_{-}- R	๕ャー--,	\mathbf{R} \|	\mathbf{R}_{-}

Theorem 9-1

The composition of two or more isometries is an isometry.
enote

Theorem 9-2 Reflections Across Parallel Lines

A Composition of reflections across two parallel lines is a translation.

You can write this composition as
$R_{m}{ }^{\circ} R_{l}(\triangle A B C)=\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
or $R_{m}\left(R_{l}(\triangle A B C)\right)=\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
The Composition has the following properties.

- $\overline{A A^{\prime \prime}}, \overline{B B^{\prime \prime}}$, and $\overline{C C^{\prime \prime}}$ are all perpendicular to lines l
 and m.
- $A A^{\prime \prime}=B B^{\prime \prime}=C C^{\prime \prime}=2 P Q$

Problem 1 Composing Reflections Across Parallel Lines

Got lt? Draw parallel lines l and m. Draw J between l and m. What is the image of $\left(R_{m}{ }^{\circ} R_{l}\right)(J)$? What is the distance of the resulting translation?
6. Reflect J across line l. $P A=A P^{\prime}$, so $P P^{\prime}=2$

7. Reflect the image across line $m . P^{\prime} B=B P^{\prime \prime}$, so $P^{\prime} P^{\prime \prime}=2$

8. Circle the correct answer.
P moved a total distance $P P^{\prime \prime}=P^{\prime} P^{\prime \prime}-P P^{\prime}=2 B P^{\prime}-2 A P^{\prime}=? ?$
$0.5 A B$
$A B$
$1.5 A B$
$2 A B$
$2.5 A B$

A Composition of reflections across two intersecting lines is a rotation.
You can write this composition as $\left(R_{l} \circ R_{m}\right)(\triangle A B C)=\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
$R_{l}\left(R_{m} \triangle A B C\right)=\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
The composition has the following properties.

- The figure is rotated about the point where the two lines intersect. In this case, point Q.

9. Underline the correct word to complete the sentence. $\triangle A B C$ is rotated clockwise/counterclockwise around the point of intersection.

Problem 3 Finding a Glide Reflection Image

Got It? $\triangle T E X$ is shown in the graph to the right. What is the image of $\triangle T E X$ for the glide reflection $\left(R_{y=-2} \circ T_{<1,0>}\right)(\triangle T E X)$?
Use the information you are given and choose from the following words to fill in the blanks and complete each statement.

> reflection translate reflect image

Know

Vertices of $\triangle T E X$:

Translation rule: $T_{<\square, \square>}$
($\triangle T E X$)
Reflection line equation:

Need

The \qquad of
$\triangle T E X$ for the glide reflection

Plan

First use the translation rule to \qquad $\triangle T E X$. Then the translation image of each vertex across the line of \qquad -.

Lesson Check - Do you UNDERSTAND?

Error Analysis You reflect $\triangle D E F$ first across line m and then across line n. Your friend says you can get the same result by reflecting $\triangle D E F$ first across line n and then across line m. Explain your friend's error.

Fill in the blanks in each statement and diagram.
 You:
12. Reflect $\triangle D E F$ over line

Your friend:

14. Reflect $\triangle D E F$ over line

15. Reflect the image of $\triangle D E F$ over line

16. Reflect the image of $\triangle D E F$ over line

17. Explain your friend's error on the lines below.
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
glide reflection
isometry
Rate how well you can use compositions of isometries.

